A geometric method for eigenvalue problems with low-rank perturbations

نویسندگان

  • Thomas J Anastasio
  • Andrea K Barreiro
  • Jared C Bronski
چکیده

We consider the problem of finding the spectrum of an operator taking the form of a low-rank (rank one or two) non-normal perturbation of a well-understood operator, motivated by a number of problems of applied interest which take this form. We use the fact that the system is a low-rank perturbation of a solved problem, together with a simple idea of classical differential geometry (the envelope of a family of curves) to completely analyse the spectrum. We use these techniques to analyse three problems of this form: a model of the oculomotor integrator due to Anastasio & Gad (2007 J. Comput. Neurosci.22, 239-254. (doi:10.1007/s10827-006-0010-x)), a continuum integrator model, and a non-local model of phase separation due to Rubinstein & Sternberg (1992 IMA J. Appl. Math.48, 249-264. (doi:10.1093/imamat/48.3.249)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Placement for Regular Matrix Pencils with Rank One Perturbations

A regular matrix pencil sE − A and its rank one perturbations are considered. We determine the sets in C ∪ {∞} which are the eigenvalues of the perturbed pencil. We show that the largest Jordan chains at each eigenvalue of sE − A may disappear and the sum of the length of all destroyed Jordan chains is the number of eigenvalues (counted with multiplicities) which can be placed arbitrarily in C∪...

متن کامل

A New Approach for Solving Symmetric Eigenvalue Problems

In this paper, we present a new approach for the solution to a series of slightly perturbed symmetric eigenvalue problems (A + BSi BT) t = X E, 0 5 i 5 m, where A = AT f 72 nxn, B E 7Znx*, and Si = q E 7ZPx*, p < n. The matrix B is assumed to have full column rank, The main idea of our approach lies in a specific choice of starting vectors used in the block Lanczos algorithm so that the effect ...

متن کامل

An Iterative Method for Computing the Pseudospectral Abscissa for a Class of Nonlinear Eigenvalue Problems

where A1, . . . , Am are given n × n matrices and the functions p1, . . . , pm are assumed to be entire. This does not only include polynomial eigenvalue problems but also eigenvalue problems arising from systems of delay differential equations. Our aim is to compute the -pseudospectral abscissa, i.e. the real part of the rightmost point in the -pseudospectrum, which is the complex set obtained...

متن کامل

Eigenvalue Statistics for Random Schrödinger Operators with Non Rank One Perturbations

We prove that certain natural random variables associated with the local eigenvalue statistics for generalized lattice Anderson models constructed with finite-rank perturbations are compound Poisson distributed. This distribution is characterized by the fact that the Lévy measure is supported on at most a finite set determined by the rank. The proof relies on a Minami-type estimate for finite-r...

متن کامل

Computation of Pseudospectral Abscissa for Large Scale Nonlinear Eigenvalue Problems

We present an algorithm to compute the pseudospectral abscissa for a nonlinear eigenvalue problem. The algorithm relies on global under-estimator and over-estimator functions for the eigenvalue and singular value functions involved. These global models follow from eigenvalue perturbation theory. The algorithm has three particular features. First, it converges to the globally rightmost point of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017